'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  q0(0(x1)) -> 0'(q1(x1))
     , q1(0(x1)) -> 0(q1(x1))
     , q1(1'(x1)) -> 1'(q1(x1))
     , 0(q1(1(x1))) -> q2(0(1'(x1)))
     , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
     , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
     , 0(q2(0(x1))) -> q2(0(0(x1)))
     , 0'(q2(0(x1))) -> q2(0'(0(x1)))
     , 1'(q2(0(x1))) -> q2(1'(0(x1)))
     , 0(q2(1'(x1))) -> q2(0(1'(x1)))
     , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
     , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
     , q2(0'(x1)) -> 0'(q0(x1))
     , q0(1'(x1)) -> 1'(q3(x1))
     , q3(1'(x1)) -> 1'(q3(x1))
     , q3(b(x1)) -> b(q4(x1))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
    , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
    , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
    , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
    , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
    , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
    , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))
    , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
    , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
    , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))
    , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
    , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
    , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
    , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
    , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
    , q3^#(b(x1)) -> c_15()}
  
  The usable rules are:
   {  q0(0(x1)) -> 0'(q1(x1))
    , q1(0(x1)) -> 0(q1(x1))
    , q1(1'(x1)) -> 1'(q1(x1))
    , 0(q1(1(x1))) -> q2(0(1'(x1)))
    , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
    , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
    , 0(q2(0(x1))) -> q2(0(0(x1)))
    , 0'(q2(0(x1))) -> q2(0'(0(x1)))
    , 1'(q2(0(x1))) -> q2(1'(0(x1)))
    , 0(q2(1'(x1))) -> q2(0(1'(x1)))
    , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
    , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
    , q0(1'(x1)) -> 1'(q3(x1))
    , q3(1'(x1)) -> 1'(q3(x1))
    , q3(b(x1)) -> b(q4(x1))
    , q2(0'(x1)) -> 0'(q0(x1))}
  
  The estimated dependency graph contains the following edges:
   {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
     ==> {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))}
   {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
     ==> {0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
   {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
     ==> {0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))}
   {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
     ==> {0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
   {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
     ==> {0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
   {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
     ==> {0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))}
   {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
     ==> {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
   {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
     ==> {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
   {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
     ==> {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))}
   {0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
     ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
   {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
     ==> {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))}
   {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
     ==> {0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
   {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
     ==> {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
   {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
     ==> {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
   {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
     ==> {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
   {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
     ==> {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
  
  We consider the following path(s):
   1) {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
       , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))
               , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [7]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
            and weakly orienting the rules
            {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
            and weakly orienting the rules
            {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [11]
                  0(x1) = [1] x1 + [4]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [8]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [12]
                  q3(x1) = [1] x1 + [11]
                  b(x1) = [1] x1 + [2]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [5]
                  q1^#(x1) = [1] x1 + [13]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [15]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [9]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [7]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [11]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [3]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q0(0(x1)) -> 0'(q1(x1))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [2]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [14]
                  q1^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [7]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [15]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))
                 , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))
                   , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 0^#_0(6) -> 16
                 , 0^#_0(9) -> 16
                 , 0^#_0(10) -> 16
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   2) {  q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
       , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
               , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [7]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [15]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [1] x1 + [8]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [1] x1 + [10]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [5]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [4]
                  c_13(x1) = [1] x1 + [7]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            and weakly orienting the rules
            {  q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [4]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [7]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {  1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [2]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [3]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [2]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [1]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [12]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [8]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [14]
                  q3(x1) = [1] x1 + [12]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [13]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                 , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                   , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   3) {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
       , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
               , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [3]
                  q1^#(x1) = [1] x1 + [5]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))}
            and weakly orienting the rules
            {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [8]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [7]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [4]
                  1(x1) = [1] x1 + [7]
                  q2(x1) = [1] x1 + [4]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [7]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [8]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [10]
                  1(x1) = [1] x1 + [13]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [1]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [2]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
                 , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
                   , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 0^#_0(6) -> 16
                 , 0^#_0(9) -> 16
                 , 0^#_0(10) -> 16
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   4) {  q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
       , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
               , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [7]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [15]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [8]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [5]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [4]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [10]
                  c_14(x1) = [1] x1 + [7]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            and weakly orienting the rules
            {  q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [4]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [7]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {  1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [2]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [3]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [2]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [1]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [12]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [8]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [14]
                  q3(x1) = [1] x1 + [12]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [13]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [12]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                 , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                   , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(2) -> 2
                 , b_0(2) -> 2
                 , q4_0(2) -> 2
                 , 0'^#_0(2) -> 1
                 , 1'^#_0(2) -> 1
                 , q2^#_0(2) -> 1
                 , q3^#_0(2) -> 1}
      
   5) {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
       , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [12]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [12]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [3]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))}
            and weakly orienting the rules
            {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [13]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [13]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [15]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [8]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [8]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [15]
                  q2(x1) = [1] x1 + [12]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [15]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [9]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [2]
                  1'^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [10]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [15]
                  q2(x1) = [1] x1 + [12]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [5]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [15]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
                 , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
                   , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(2) -> 2
                 , b_0(2) -> 2
                 , q4_0(2) -> 2
                 , 0'^#_0(2) -> 1
                 , q1^#_0(2) -> 1
                 , 1'^#_0(2) -> 1
                 , q2^#_0(2) -> 1}
      
   6) {  q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
       , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
               , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [7]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [15]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [1] x1 + [8]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [1] x1 + [10]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [5]
                  c_12(x1) = [1] x1 + [4]
                  c_13(x1) = [1] x1 + [7]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            and weakly orienting the rules
            {  q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [4]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [7]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {  1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [2]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [3]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [2]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [1]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [12]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [8]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [14]
                  q3(x1) = [1] x1 + [12]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [13]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                 , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                   , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(2) -> 2
                 , b_0(2) -> 2
                 , q4_0(2) -> 2
                 , q0^#_0(2) -> 1
                 , 0'^#_0(2) -> 1
                 , 1'^#_0(2) -> 1
                 , q2^#_0(2) -> 1}
      
   7) {  q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
       , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
               , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [7]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [15]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [8]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [5]
                  c_12(x1) = [1] x1 + [4]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [10]
                  c_14(x1) = [1] x1 + [7]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            and weakly orienting the rules
            {  q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [4]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [7]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {  1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [2]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [3]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [2]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [1]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [15]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [12]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [8]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [14]
                  q3(x1) = [1] x1 + [12]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [13]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [12]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                 , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                   , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(2) -> 2
                 , b_0(2) -> 2
                 , q4_0(2) -> 2
                 , 0'^#_0(2) -> 1
                 , 1'^#_0(2) -> 1
                 , q2^#_0(2) -> 1
                 , q3^#_0(2) -> 1}
      
   8) {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
       , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))
               , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
            and weakly orienting the rules
            {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [7]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [7]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [3]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [9]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [1]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [6]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [4]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [3]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [5]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [5]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))
                 , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))
                   , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 0^#_0(6) -> 16
                 , 0^#_0(9) -> 16
                 , 0^#_0(10) -> 16
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   9) {  q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [2]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
            and weakly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [7]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [1]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [4]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [7]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [9]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [5]
                  0'^#(x1) = [1] x1 + [4]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [7]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [1]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
                 , q3(b(x1)) -> b(q4(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
                   , q3(b(x1)) -> b(q4(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   10)
      {  q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
       , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
               , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [15]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [3]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [1]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [7]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [5]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [4]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [3]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [3]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [10]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [6]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [4]
                  c_4(x1) = [1] x1 + [5]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [12]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [12]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [11]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [8]
                  c_4(x1) = [1] x1 + [2]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   11)
      {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
       , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(b(x1)) -> b(q4(x1))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [3]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [2]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [9]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [4]
                  1'^#(x1) = [1] x1 + [3]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [5]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [4]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                 , q3(b(x1)) -> b(q4(x1))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                   , q3(b(x1)) -> b(q4(x1))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   12)
      {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
       , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
       , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
       , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
       , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q0(0(x1)) -> 0'(q1(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q0(0(x1)) -> 0'(q1(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(b(x1)) -> b(q4(x1))
               , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
               , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [3]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [15]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [3]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [15]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [9]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [4]
                  1'^#(x1) = [1] x1 + [3]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [5]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
             , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [6]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [4]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [14]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                 , q3(b(x1)) -> b(q4(x1))
                 , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                 , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                   , q3(b(x1)) -> b(q4(x1))
                   , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))
                   , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   13)
      {  q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
       , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
      
      The usable rules for this path are the following:
      {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
               , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [14]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            and weakly orienting the rules
            {  q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [3]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [6]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [11]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [14]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [14]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                 , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                   , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20
                 , q3^#_0(6) -> 31
                 , q3^#_0(9) -> 31
                 , q3^#_0(10) -> 31}
      
   14)
      {  q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
       , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
      
      The usable rules for this path are the following:
      {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
               , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [14]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            and weakly orienting the rules
            {  q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [11]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [6]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [14]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [14]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                 , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))
                   , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   15)
      {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
       , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
               , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [15]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [8]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [4]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            and weakly orienting the rules
            {  1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [4]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [9]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [8]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [9]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [8]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [12]
                  1(x1) = [1] x1 + [14]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [8]
                  1'^#(x1) = [1] x1 + [12]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [7]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [12]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [9]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                 , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                   , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   16)
      {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
       , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
               , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [15]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [11]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [4]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(b(x1)) -> b(q4(x1))
               , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [8]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [13]
                  c_1(x1) = [1] x1 + [10]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [5]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [4]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [6]
                  0(x1) = [1] x1 + [4]
                  0'(x1) = [1] x1 + [10]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [6]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [4]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 0^#_0(6) -> 16
                 , 0^#_0(9) -> 16
                 , 0^#_0(10) -> 16
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   17)
      {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
       , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
               , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [8]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [7]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [15]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [7]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [7]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [11]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [7]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [13]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [12]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [5]
                  1'^#(x1) = [1] x1 + [5]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   18)
      {  q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
       , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
      
      The usable rules for this path are the following:
      {  0(q1(1(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
               , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(0(x1)) -> 0'(q1(x1))
               , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [1]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [2]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [1]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [1]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [1]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [12]
                  q3(x1) = [1] x1 + [2]
                  b(x1) = [1] x1 + [3]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [4]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [8]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [14]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  0(q2(0(x1))) -> q2(0(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                 , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  0(q2(0(x1))) -> q2(0(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                   , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   19)
      {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
       , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
               , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [15]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {  q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(0(x1)) -> 0'(q1(x1))
               , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [9]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [2]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [12]
                  1(x1) = [1] x1 + [15]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [12]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   20)
      {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
       , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
               , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [15]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(0(x1)) -> 0'(q1(x1))
               , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [9]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [2]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [2]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 0^#_0(6) -> 16
                 , 0^#_0(9) -> 16
                 , 0^#_0(10) -> 16
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   21)
      {  q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
       , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
               , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))}
            and weakly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(1'(x1)) -> 1'(q3(x1))
               , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
               , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [1]
                  0'^#(x1) = [1] x1 + [1]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [7]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [4]
                  0'^#(x1) = [1] x1 + [4]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [7]
                  0(x1) = [1] x1 + [2]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [9]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [7]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [4]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q3(b(x1)) -> b(q4(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
                 , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q3(b(x1)) -> b(q4(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
                   , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   22)
      {  q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
       , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
      
      The usable rules for this path are the following:
      {  0(q1(1(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
               , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q0(0(x1)) -> 0'(q1(x1))
               , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [1]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [2]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [1]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [1]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [1]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [12]
                  q3(x1) = [1] x1 + [2]
                  b(x1) = [1] x1 + [3]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [4]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [8]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
             , q3(b(x1)) -> b(q4(x1))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0(1'(x1)) -> 1'(q3(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [14]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  0(q2(0(x1))) -> q2(0(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                 , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  0(q2(0(x1))) -> q2(0(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                   , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20
                 , q3^#_0(6) -> 31
                 , q3^#_0(9) -> 31
                 , q3^#_0(10) -> 31}
      
   23)
      {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
       , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
               , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q2(0'(x1)) -> 0'(q0(x1))
               , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
            and weakly orienting the rules
            {  q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [7]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [3]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q3(b(x1)) -> b(q4(x1))}
            and weakly orienting the rules
            {  q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , q3(b(x1)) -> b(q4(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [7]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [1]
                  1(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [9]
                  q3(x1) = [1] x1 + [10]
                  b(x1) = [1] x1 + [8]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [2]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [7]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [8]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [6]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q2(0'(x1)) -> 0'(q0(x1))
             , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [13]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [7]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [1] x1 + [9]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [2]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                 , q2(0'(x1)) -> 0'(q0(x1))
                 , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                   , q2(0'(x1)) -> 0'(q0(x1))
                   , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 0^#_0(6) -> 16
                 , 0^#_0(9) -> 16
                 , 0^#_0(10) -> 16
                 , q2^#_0(6) -> 20
                 , q2^#_0(9) -> 20
                 , q2^#_0(10) -> 20}
      
   24)
      {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
      
      The usable rules for this path are the following:
      {  q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q0(0(x1)) -> 0'(q1(x1))
             , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [4]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q3(1'(x1)) -> 1'(q3(x1))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  q0(1'(x1)) -> 1'(q3(x1))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q3(1'(x1)) -> 1'(q3(x1))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  q0(1'(x1)) -> 1'(q3(x1))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18}
      
   25)
      {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [8]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(b(x1)) -> b(q4(x1))
               , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [5]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [13]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [8]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [13]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [11]
                  c_0(x1) = [1] x1 + [1]
                  0'^#(x1) = [1] x1 + [1]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [2]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [3]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0'^#(x1) = [1] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q0^#_0(6) -> 11
                 , q0^#_0(9) -> 11
                 , q0^#_0(10) -> 11
                 , 0'^#_0(6) -> 13
                 , 0'^#_0(9) -> 13
                 , 0'^#_0(10) -> 13}
      
   26)
      {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [8]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [4]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(b(x1)) -> b(q4(x1))
               , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [4]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [12]
                  q3(x1) = [1] x1 + [2]
                  b(x1) = [1] x1 + [15]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [5]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [6]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18}
      
   27)
      {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
      
      The usable rules for this path are the following:
      {  q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(b(x1)) -> b(q4(x1))
               , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q0(0(x1)) -> 0'(q1(x1))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [2]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [1]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [12]
                  c_14(x1) = [1] x1 + [1]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {  1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0(q1(1(x1))) -> q2(0(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q0(0(x1)) -> 0'(q1(x1))
             , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [4]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [8]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [9]
                  c_14(x1) = [1] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q3(1'(x1)) -> 1'(q3(x1))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))}
              Weak Rules:
                {  q0(1'(x1)) -> 1'(q3(x1))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q0(0(x1)) -> 0'(q1(x1))
                 , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q3(1'(x1)) -> 1'(q3(x1))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))}
                Weak Rules:
                  {  q0(1'(x1)) -> 1'(q3(x1))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q0(0(x1)) -> 0'(q1(x1))
                   , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , 1'^#_0(6) -> 18
                 , 1'^#_0(9) -> 18
                 , 1'^#_0(10) -> 18
                 , q3^#_0(6) -> 31
                 , q3^#_0(9) -> 31
                 , q3^#_0(10) -> 31}
      
   28)
      {q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
      
      The usable rules for this path are the following:
      {  q1(0(x1)) -> 0(q1(x1))
       , q1(1'(x1)) -> 1'(q1(x1))
       , 0(q1(1(x1))) -> q2(0(1'(x1)))
       , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
       , 0(q2(0(x1))) -> q2(0(0(x1)))
       , 1'(q2(0(x1))) -> q2(1'(0(x1)))
       , 0(q2(1'(x1))) -> q2(0(1'(x1)))
       , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
       , q2(0'(x1)) -> 0'(q0(x1))
       , q0(0(x1)) -> 0'(q1(x1))
       , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
       , 0'(q2(0(x1))) -> q2(0'(0(x1)))
       , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
       , q0(1'(x1)) -> 1'(q3(x1))
       , q3(1'(x1)) -> 1'(q3(x1))
       , q3(b(x1)) -> b(q4(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  q1(0(x1)) -> 0(q1(x1))
               , q1(1'(x1)) -> 1'(q1(x1))
               , 0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0(q2(0(x1))) -> q2(0(0(x1)))
               , 1'(q2(0(x1))) -> q2(1'(0(x1)))
               , 0(q2(1'(x1))) -> q2(0(1'(x1)))
               , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
               , q2(0'(x1)) -> 0'(q0(x1))
               , q0(0(x1)) -> 0'(q1(x1))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
               , 0'(q2(0(x1))) -> q2(0'(0(x1)))
               , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
               , q0(1'(x1)) -> 1'(q3(x1))
               , q3(1'(x1)) -> 1'(q3(x1))
               , q3(b(x1)) -> b(q4(x1))
               , q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [8]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(1'(x1)) -> 1'(q3(x1))}
            and weakly orienting the rules
            {q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(1'(x1)) -> 1'(q3(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
            and weakly orienting the rules
            {  q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  q3(b(x1)) -> b(q4(x1))
               , q1^#(0(x1)) -> c_1(0^#(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [5]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  q3(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [1]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [13]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [8]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
            and weakly orienting the rules
            {  q3(b(x1)) -> b(q4(x1))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(1(x1))) -> q2(0(1'(x1)))
               , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
               , 0'(q1(1(x1))) -> q2(0'(1'(x1)))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [8]
                  1(x1) = [1] x1 + [13]
                  q2(x1) = [1] x1 + [0]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [11]
                  c_1(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {q0(0(x1)) -> 0'(q1(x1))}
            and weakly orienting the rules
            {  0(q1(1(x1))) -> q2(0(1'(x1)))
             , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
             , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
             , q3(b(x1)) -> b(q4(x1))
             , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
             , q0(1'(x1)) -> 1'(q3(x1))
             , q2(0'(x1)) -> 0'(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q0(0(x1)) -> 0'(q1(x1))}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  0'(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [1]
                  1'(x1) = [1] x1 + [0]
                  1(x1) = [1] x1 + [2]
                  q2(x1) = [1] x1 + [2]
                  q3(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [3]
                  q4(x1) = [1] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  q1(0(x1)) -> 0(q1(x1))
                 , q1(1'(x1)) -> 1'(q1(x1))
                 , 0(q2(0(x1))) -> q2(0(0(x1)))
                 , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                 , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                 , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                 , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                 , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                 , q3(1'(x1)) -> 1'(q3(x1))}
              Weak Rules:
                {  q0(0(x1)) -> 0'(q1(x1))
                 , 0(q1(1(x1))) -> q2(0(1'(x1)))
                 , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                 , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                 , q3(b(x1)) -> b(q4(x1))
                 , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                 , q0(1'(x1)) -> 1'(q3(x1))
                 , q2(0'(x1)) -> 0'(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  q1(0(x1)) -> 0(q1(x1))
                   , q1(1'(x1)) -> 1'(q1(x1))
                   , 0(q2(0(x1))) -> q2(0(0(x1)))
                   , 1'(q2(0(x1))) -> q2(1'(0(x1)))
                   , 0(q2(1'(x1))) -> q2(0(1'(x1)))
                   , 1'(q2(1'(x1))) -> q2(1'(1'(x1)))
                   , 0'(q2(0(x1))) -> q2(0'(0(x1)))
                   , 0'(q2(1'(x1))) -> q2(0'(1'(x1)))
                   , q3(1'(x1)) -> 1'(q3(x1))}
                Weak Rules:
                  {  q0(0(x1)) -> 0'(q1(x1))
                   , 0(q1(1(x1))) -> q2(0(1'(x1)))
                   , 1'(q1(1(x1))) -> q2(1'(1'(x1)))
                   , 0'(q1(1(x1))) -> q2(0'(1'(x1)))
                   , q3(b(x1)) -> b(q4(x1))
                   , q1^#(0(x1)) -> c_1(0^#(q1(x1)))
                   , q0(1'(x1)) -> 1'(q3(x1))
                   , q2(0'(x1)) -> 0'(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  1_0(6) -> 6
                 , 1_0(9) -> 6
                 , 1_0(10) -> 6
                 , b_0(6) -> 9
                 , b_0(9) -> 9
                 , b_0(10) -> 9
                 , q4_0(6) -> 10
                 , q4_0(9) -> 10
                 , q4_0(10) -> 10
                 , q1^#_0(6) -> 14
                 , q1^#_0(9) -> 14
                 , q1^#_0(10) -> 14
                 , 0^#_0(6) -> 16
                 , 0^#_0(9) -> 16
                 , 0^#_0(10) -> 16}
      
   29)
      {q3^#(b(x1)) -> c_15()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           q0(x1) = [0] x1 + [0]
           0(x1) = [0] x1 + [0]
           0'(x1) = [0] x1 + [0]
           q1(x1) = [0] x1 + [0]
           1'(x1) = [0] x1 + [0]
           1(x1) = [0] x1 + [0]
           q2(x1) = [0] x1 + [0]
           q3(x1) = [0] x1 + [0]
           b(x1) = [0] x1 + [0]
           q4(x1) = [0] x1 + [0]
           q0^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           0'^#(x1) = [0] x1 + [0]
           q1^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           0^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           1'^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           q2^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           q3^#(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {q3^#(b(x1)) -> c_15()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {q3^#(b(x1)) -> c_15()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {q3^#(b(x1)) -> c_15()}
              
              Details:
                 Interpretation Functions:
                  q0(x1) = [0] x1 + [0]
                  0(x1) = [0] x1 + [0]
                  0'(x1) = [0] x1 + [0]
                  q1(x1) = [0] x1 + [0]
                  1'(x1) = [0] x1 + [0]
                  1(x1) = [0] x1 + [0]
                  q2(x1) = [0] x1 + [0]
                  q3(x1) = [0] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  q4(x1) = [0] x1 + [0]
                  q0^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0'^#(x1) = [0] x1 + [0]
                  q1^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  0^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  1'^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  q2^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  q3^#(x1) = [1] x1 + [1]
                  c_14(x1) = [0] x1 + [0]
                  c_15() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {q3^#(b(x1)) -> c_15()}
            
            Details:         
              The given problem does not contain any strict rules