'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} Details: We have computed the following set of weak (innermost) dependency pairs: { q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3^#(b(x1)) -> c_15()} The usable rules are: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} The estimated dependency graph contains the following edges: {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} ==> {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))} {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} ==> {0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} ==> {0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))} {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} ==> {0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} ==> {0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} ==> {0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))} {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} ==> {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} ==> {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} ==> {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))} {0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} ==> {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} ==> {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))} {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} ==> {0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} ==> {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} ==> {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} ==> {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} ==> {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} We consider the following path(s): 1) { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [7] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} and weakly orienting the rules { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [3] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} and weakly orienting the rules { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [11] 0(x1) = [1] x1 + [4] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [8] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [12] q3(x1) = [1] x1 + [11] b(x1) = [1] x1 + [2] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [5] q1^#(x1) = [1] x1 + [13] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [9] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [15] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [9] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [7] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [11] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [3] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [2] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [14] q1^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [7] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [15] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 0^#_0(6) -> 16 , 0^#_0(9) -> 16 , 0^#_0(10) -> 16 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 2) { q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [7] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [15] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [1] x1 + [8] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [1] q0^#(x1) = [1] x1 + [10] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [5] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [4] c_13(x1) = [1] x1 + [7] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} and weakly orienting the rules { q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [4] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [7] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules { 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [2] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [3] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [3] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [2] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [1] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [12] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [8] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [14] q3(x1) = [1] x1 + [12] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [12] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [13] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 3) { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [3] q1^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))} and weakly orienting the rules { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [8] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [7] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [4] 1(x1) = [1] x1 + [7] q2(x1) = [1] x1 + [4] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [7] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [8] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [2] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [10] 1(x1) = [1] x1 + [13] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [1] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [2] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 0^#_0(6) -> 16 , 0^#_0(9) -> 16 , 0^#_0(10) -> 16 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 4) { q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [7] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [15] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [8] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [1] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [5] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [4] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [10] c_14(x1) = [1] x1 + [7] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} and weakly orienting the rules { q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [4] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [7] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules { 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [2] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [3] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [3] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [2] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [1] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [12] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [8] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [14] q3(x1) = [1] x1 + [12] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [13] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [12] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(2) -> 2 , b_0(2) -> 2 , q4_0(2) -> 2 , 0'^#_0(2) -> 1 , 1'^#_0(2) -> 1 , q2^#_0(2) -> 1 , q3^#_0(2) -> 1} 5) { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [12] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [12] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [3] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))} and weakly orienting the rules { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [13] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [13] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [15] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [8] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [8] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [15] q2(x1) = [1] x1 + [12] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [15] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [8] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [9] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [2] 1'^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [10] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [15] q2(x1) = [1] x1 + [12] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [5] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [15] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q0(0(x1)) -> 0'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q0(0(x1)) -> 0'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(2) -> 2 , b_0(2) -> 2 , q4_0(2) -> 2 , 0'^#_0(2) -> 1 , q1^#_0(2) -> 1 , 1'^#_0(2) -> 1 , q2^#_0(2) -> 1} 6) { q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [7] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [1] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [15] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [1] x1 + [8] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [1] q0^#(x1) = [1] x1 + [10] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [5] c_12(x1) = [1] x1 + [4] c_13(x1) = [1] x1 + [7] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} and weakly orienting the rules { q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [4] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [7] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules { 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [2] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [3] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [3] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [2] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [1] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [15] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [12] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [8] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [14] q3(x1) = [1] x1 + [12] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [12] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [13] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(2) -> 2 , b_0(2) -> 2 , q4_0(2) -> 2 , q0^#_0(2) -> 1 , 0'^#_0(2) -> 1 , 1'^#_0(2) -> 1 , q2^#_0(2) -> 1} 7) { q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [7] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [15] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [8] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [1] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [5] c_12(x1) = [1] x1 + [4] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [10] c_14(x1) = [1] x1 + [7] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} and weakly orienting the rules { q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [4] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [7] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules { 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [2] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [3] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [3] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [2] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [1] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [15] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [12] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [8] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [14] q3(x1) = [1] x1 + [12] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [13] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [12] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(2) -> 2 , b_0(2) -> 2 , q4_0(2) -> 2 , 0'^#_0(2) -> 1 , 1'^#_0(2) -> 1 , q2^#_0(2) -> 1 , q3^#_0(2) -> 1} 8) { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} and weakly orienting the rules { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [7] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [7] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [3] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [9] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [1] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [6] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [4] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [3] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [5] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1)))) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 0^#_0(6) -> 16 , 0^#_0(9) -> 16 , 0^#_0(10) -> 16 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 9) { q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [2] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} and weakly orienting the rules {q3(b(x1)) -> b(q4(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [7] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [1] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [4] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [7] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [9] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [5] 0'^#(x1) = [1] x1 + [4] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [7] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [1] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [1] q0^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 10) { q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [15] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [3] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [1] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [7] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [5] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [4] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [3] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [3] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [10] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [6] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [4] c_4(x1) = [1] x1 + [5] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [12] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [12] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [11] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [8] c_4(x1) = [1] x1 + [2] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 11) { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [3] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [2] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [9] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [4] 1'^#(x1) = [1] x1 + [3] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [5] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [4] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [1] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [3] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 12) { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} The usable rules for this path are the following: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q0(0(x1)) -> 0'(q1(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [3] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [15] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [3] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [15] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2^#(0'(x1)) -> c_12(0'^#(q0(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [9] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [4] 1'^#(x1) = [1] x1 + [3] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [5] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [6] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [4] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [14] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q2^#(0'(x1)) -> c_12(0'^#(q0(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , 0'^#(q2(1'(x1))) -> c_10(q2^#(0'(1'(x1)))) , 0'^#(q2(0(x1))) -> c_7(q2^#(0'(0(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 13) { q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} The usable rules for this path are the following: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [14] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} and weakly orienting the rules { q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [3] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [6] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [11] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [14] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [14] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20 , q3^#_0(6) -> 31 , q3^#_0(9) -> 31 , q3^#_0(10) -> 31} 14) { q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} The usable rules for this path are the following: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [14] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} and weakly orienting the rules { q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [3] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [11] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [6] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [14] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [14] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1)))) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 15) { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [15] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [8] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [4] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} and weakly orienting the rules { 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [4] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [9] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [8] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [9] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [8] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [12] 1(x1) = [1] x1 + [14] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [8] 1'^#(x1) = [1] x1 + [12] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [7] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [12] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [9] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q1(1(x1))) -> c_5(q2^#(1'(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 16) { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [15] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [11] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [4] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q3(b(x1)) -> b(q4(x1)) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(b(x1)) -> b(q4(x1)) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [8] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [13] c_1(x1) = [1] x1 + [10] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [4] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [6] 0(x1) = [1] x1 + [4] 0'(x1) = [1] x1 + [10] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [6] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [4] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , 0^#(q1(1(x1))) -> c_3(q2^#(0(1'(x1)))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 0^#_0(6) -> 16 , 0^#_0(9) -> 16 , 0^#_0(10) -> 16 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 17) { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [8] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [7] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [15] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [7] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [7] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [11] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [7] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [13] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [12] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [5] 1'^#(x1) = [1] x1 + [5] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(1'(x1))) -> c_11(q2^#(1'(1'(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 18) { q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} The usable rules for this path are the following: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [1] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [2] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [1] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [1] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} and weakly orienting the rules { 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [1] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [12] q3(x1) = [1] x1 + [2] b(x1) = [1] x1 + [3] q4(x1) = [1] x1 + [1] q0^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [4] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [8] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [14] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 19) { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [15] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules { q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [9] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [2] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [12] 1(x1) = [1] x1 + [15] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [12] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 20) { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [15] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [9] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [2] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [2] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(1'(x1))) -> c_9(q2^#(0(1'(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 0^#_0(6) -> 16 , 0^#_0(9) -> 16 , 0^#_0(10) -> 16 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 21) { q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))} and weakly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [1] 0'^#(x1) = [1] x1 + [1] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1)))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [7] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [1] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [4] 0'^#(x1) = [1] x1 + [4] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [7] 0(x1) = [1] x1 + [2] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [9] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [7] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [4] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , 0'^#(q1(1(x1))) -> c_4(q2^#(0'(1'(x1)))) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 22) { q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} The usable rules for this path are the following: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [1] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [2] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [1] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [1] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} and weakly orienting the rules { 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [1] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [12] q3(x1) = [1] x1 + [2] b(x1) = [1] x1 + [3] q4(x1) = [1] x1 + [1] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [4] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [8] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [14] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [0] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1)) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , 1'^#(q2(0(x1))) -> c_8(q2^#(1'(0(x1)))) , q3(b(x1)) -> b(q4(x1)) , q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20 , q3^#_0(6) -> 31 , q3^#_0(9) -> 31 , q3^#_0(10) -> 31} 23) { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} Details: We apply the weight gap principle, strictly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} and weakly orienting the rules { q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [7] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [3] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1))} and weakly orienting the rules { q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [7] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [1] 1(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [9] q3(x1) = [1] x1 + [10] b(x1) = [1] x1 + [8] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [2] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [7] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [8] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [6] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [13] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [7] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [2] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , q0(1'(x1)) -> 1'(q3(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , 0^#(q2(0(x1))) -> c_6(q2^#(0(0(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 0^#_0(6) -> 16 , 0^#_0(9) -> 16 , 0^#_0(10) -> 16 , q2^#_0(6) -> 20 , q2^#_0(9) -> 20 , q2^#_0(10) -> 20} 24) {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} The usable rules for this path are the following: { q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} Details: We apply the weight gap principle, strictly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0^#(1'(x1)) -> c_13(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [2] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [1] q0^#(x1) = [1] x1 + [12] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [4] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q3(1'(x1)) -> 1'(q3(x1)) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(1'(x1)) -> 1'(q3(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q3(1'(x1)) -> 1'(q3(x1)) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(1'(x1)) -> 1'(q3(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q0^#(1'(x1)) -> c_13(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18} 25) {q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} Details: We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [8] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(b(x1)) -> b(q4(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [5] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [13] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [8] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [13] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [11] c_0(x1) = [1] x1 + [1] 0'^#(x1) = [1] x1 + [1] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [2] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [3] q4(x1) = [1] x1 + [0] q0^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0'^#(x1) = [1] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q0^#(0(x1)) -> c_0(0'^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q0^#_0(6) -> 11 , q0^#_0(9) -> 11 , q0^#_0(10) -> 11 , 0'^#_0(6) -> 13 , 0'^#_0(9) -> 13 , 0'^#_0(10) -> 13} 26) {q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [8] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [4] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [4] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [12] q3(x1) = [1] x1 + [2] b(x1) = [1] x1 + [15] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [5] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [6] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [4] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(1'(x1)) -> c_2(1'^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18} 27) {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} The usable rules for this path are the following: { q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} Details: We apply the weight gap principle, strictly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3^#(1'(x1)) -> c_14(1'^#(q3(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q0(0(x1)) -> 0'(q1(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [2] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [0] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [1] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [12] c_14(x1) = [1] x1 + [1] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules { 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [4] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [8] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [9] c_14(x1) = [1] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q3(1'(x1)) -> 1'(q3(x1)) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(1'(x1)) -> 1'(q3(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q3(1'(x1)) -> 1'(q3(x1)) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1))} Weak Rules: { q0(1'(x1)) -> 1'(q3(x1)) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q0(0(x1)) -> 0'(q1(x1)) , q3^#(1'(x1)) -> c_14(1'^#(q3(x1))) , q3(b(x1)) -> b(q4(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , 1'^#_0(6) -> 18 , 1'^#_0(9) -> 18 , 1'^#_0(10) -> 18 , q3^#_0(6) -> 31 , q3^#_0(9) -> 31 , q3^#_0(10) -> 31} 28) {q1^#(0(x1)) -> c_1(0^#(q1(x1)))} The usable rules for this path are the following: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , q2(0'(x1)) -> 0'(q0(x1)) , q0(0(x1)) -> 0'(q1(x1)) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q3(1'(x1)) -> 1'(q3(x1)) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1)))} Details: We apply the weight gap principle, strictly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q2(0'(x1)) -> 0'(q0(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [8] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(1'(x1)) -> 1'(q3(x1))} and weakly orienting the rules {q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(1'(x1)) -> 1'(q3(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1)))} and weakly orienting the rules { q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [5] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] q3(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [13] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [8] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} and weakly orienting the rules { q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1)))} Details: Interpretation Functions: q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [8] 1(x1) = [1] x1 + [13] q2(x1) = [1] x1 + [0] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [11] c_1(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {q0(0(x1)) -> 0'(q1(x1))} and weakly orienting the rules { 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q0(0(x1)) -> 0'(q1(x1))} Details: Interpretation Functions: q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] 0'(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [1] 1'(x1) = [1] x1 + [0] 1(x1) = [1] x1 + [2] q2(x1) = [1] x1 + [2] q3(x1) = [1] x1 + [0] b(x1) = [1] x1 + [3] q4(x1) = [1] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { q1(0(x1)) -> 0(q1(x1)) , q1(1'(x1)) -> 1'(q1(x1)) , 0(q2(0(x1))) -> q2(0(0(x1))) , 1'(q2(0(x1))) -> q2(1'(0(x1))) , 0(q2(1'(x1))) -> q2(0(1'(x1))) , 1'(q2(1'(x1))) -> q2(1'(1'(x1))) , 0'(q2(0(x1))) -> q2(0'(0(x1))) , 0'(q2(1'(x1))) -> q2(0'(1'(x1))) , q3(1'(x1)) -> 1'(q3(x1))} Weak Rules: { q0(0(x1)) -> 0'(q1(x1)) , 0(q1(1(x1))) -> q2(0(1'(x1))) , 1'(q1(1(x1))) -> q2(1'(1'(x1))) , 0'(q1(1(x1))) -> q2(0'(1'(x1))) , q3(b(x1)) -> b(q4(x1)) , q1^#(0(x1)) -> c_1(0^#(q1(x1))) , q0(1'(x1)) -> 1'(q3(x1)) , q2(0'(x1)) -> 0'(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { 1_0(6) -> 6 , 1_0(9) -> 6 , 1_0(10) -> 6 , b_0(6) -> 9 , b_0(9) -> 9 , b_0(10) -> 9 , q4_0(6) -> 10 , q4_0(9) -> 10 , q4_0(10) -> 10 , q1^#_0(6) -> 14 , q1^#_0(9) -> 14 , q1^#_0(10) -> 14 , 0^#_0(6) -> 16 , 0^#_0(9) -> 16 , 0^#_0(10) -> 16} 29) {q3^#(b(x1)) -> c_15()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: q0(x1) = [0] x1 + [0] 0(x1) = [0] x1 + [0] 0'(x1) = [0] x1 + [0] q1(x1) = [0] x1 + [0] 1'(x1) = [0] x1 + [0] 1(x1) = [0] x1 + [0] q2(x1) = [0] x1 + [0] q3(x1) = [0] x1 + [0] b(x1) = [0] x1 + [0] q4(x1) = [0] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {q3^#(b(x1)) -> c_15()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {q3^#(b(x1)) -> c_15()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {q3^#(b(x1)) -> c_15()} Details: Interpretation Functions: q0(x1) = [0] x1 + [0] 0(x1) = [0] x1 + [0] 0'(x1) = [0] x1 + [0] q1(x1) = [0] x1 + [0] 1'(x1) = [0] x1 + [0] 1(x1) = [0] x1 + [0] q2(x1) = [0] x1 + [0] q3(x1) = [0] x1 + [0] b(x1) = [1] x1 + [0] q4(x1) = [0] x1 + [0] q0^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0'^#(x1) = [0] x1 + [0] q1^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] 1'^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] q2^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] q3^#(x1) = [1] x1 + [1] c_14(x1) = [0] x1 + [0] c_15() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {q3^#(b(x1)) -> c_15()} Details: The given problem does not contain any strict rules